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Inverse melting is the phenomenon, observed in both helium isotopes, by which a crystal melts when cooled
at constant pressure. I investigate discrete-space analogs of inverse melting by means of two instances of a
triangular-lattice-gas system endowed with a soft-core repulsion and a short-ranged attraction. To reconstruct
the phase diagram, I use both transfer-matrix and Monte Carlo methods, as well as low-temperature series
expansions. In one case, a phase behavior reminiscent of helium emerges, with a loose-packed phase �which is
solidlike for low temperatures and liquidlike for high temperatures� extending down to zero temperature for
low pressures and the possibility of melting the close-packed solid by isobaric cooling. At variance with
previous model studies of inverse melting, the driving mechanism of the present phenomenon is mainly
geometrical, related to the larger free-energy cost of a “vacancy” in the loose-packed solid than in the close-
packed one.
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I. INTRODUCTION

Inverse melting �IM� is hardly mentioned in a catalog of
helium oddities. Yet, helium provides the only example of an
elemental solid that can be melted isobarically by lowering
the temperature, although this only occurs in a small range of
pressures. This striking phenomenon, which is still poorly
understood, is evidenced in the low-temperature phase dia-
grams of both 3He and 4He by a decreasing profile of the
solid-liquid coexistence pressure Pcox as a function of tem-
perature T �1�. Another kind of IM is provided by P4MP1
polymer solutions �2�, where a tetragonal crystal undergoes
amorphization on cooling, accompanied by heat release.

The existence of IM fights against common sense but by
no means disproves thermodynamics �3,4�. The slope of
Pcox�T� is ruled by the Clausius-Clapeyron equation,

dPcox

dT
=

S2 − S1

V2 − V1
, �1.1�

where V1, V2 and S1, S2 are the volume and entropy values of
the coexisting phases. Nothing prevents a phase transition to
occur, at fixed external pressure, from a low-temperature
phase 1 to a high-temperature phase 2 with both volume
contraction and positive latent heat, hence with negative
�S /�V �this is the case, for instance, of ordinary ice and
water�. What is peculiar to helium IM is that the more com-
pact and more entropic phase is solid rather than liquid. The
case of P4MP1 is different: Here �S /�V�0, but the solid
still lies on the high-temperature side of the transition.

Generally speaking, IM requires some microscopic
mechanism by which spatially confined particles can none-
theless have more entropy than the coexisting liquid. In 3He,
the nuclear spins are more coupled �i.e., less free to orient
independently of each other� in the liquid than in the solid
phase. Inverse melting of P4MP1 is explained by a larger

amount of polymer conformations in the crystal than in the
amorphous state, due to a more open crystal structure.

Pursuing the analogy with the above systems, the few
models of IM proposed so far have invariably focused on
systems of particles with internal degrees of freedom �5,6�.
When the single-particle states are taken to be more degen-
erate in the ordered than in the disordered phase, IM can
occur. In practice, one needs a very fine tuning of the single-
particle spectrum to obtain a realistic IM scenario.

The purpose of this paper is to show that IM—or an ana-
log of it—is also observed in systems that are hosted on a
lattice. The model presented here is a classical lattice-gas
system which, with no other ingredients than the radial de-
pendence of its pair-interaction strength, exhibits a phase be-
havior that is reminiscent of helium. In particular, �1� the
system can exist in a loose-packed phase down to zero tem-
perature for low enough pressures; and �2� in a range of
pressures, the close-packed solid melts into a less dense
structure upon cooling. This phase is crystalline at very low
temperatures, but can be a liquid at higher temperatures. Be-
sides the similarities, however, the present IM has conceiv-
ably little to do with helium: While IM of the latter has a
quantum-mechanical origin, the phenomenon herein dis-
cussed heavily relies on the steric constraints being deter-
mined by the interplay between lattice geometry and interac-
tion. Specifically, it deals with the different free-energy cost,
at low temperature, of vacancylike excitations in the loose-
packed solid and in the close-packed one. In fact, any lattice
potential that is provided with an extended hard-core repul-
sion, a shoulder, and a thin attractive well would prove ad-
equate to bend downward Pcox�T� at T=0.

The rest of the paper is organized as follows: In Sec. II,
after introducing a class of lattice gases that could possibly
share some features in common with helium, I outline an
analytic method for checking the existence of IM. Then, in
Sec. III, I describe the numerical techniques that are used to
work out the phase diagram of such a lattice gas. Results are
presented in Sec. IV, where a comparison is made between
two similar case studies, in an attempt to unveil general rules
of behavior. Some further remarks and conclusions are given
in Sec. V.*Electronic address: Santi.Prestipino@unime.it
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II. MODEL

Classical lattice gases provide caricatural descriptions of
real fluids that, while broadly preserving the topology of the
phase diagram, are by far much simpler to study both ana-
lytically and numerically �7–10�. If the aim is finding a
lattice-gas system with a helium-type phase diagram, but
with no ambition to model a real substance, working in two
dimensions is by no means restrictive, in fact it is convenient
for a twofold reason: The transfer-matrix method, which is
the most powerful technique for reconstructing numerically
the phase diagram of a lattice gas, is a viable tool only in two
dimensions. Moreover, with an eye to making use also of
low-temperature expansions for the analysis, enumeration of
ground-state defects �excitations� is much easier in two than
in three dimensions.

The type of models here considered is a lattice-gas system
hosted on the triangular lattice. A given lattice site can be
either occupied �by a single particle� or empty. Calling ci
=0,1 the occupation number of site i, the lattice-gas Hamil-
tonian reads �i�jv��i− j��cicj, with a pair potential v depend-
ing on site-site separation only. In the very first place, this
potential is asked to meet two conditions: �1� It must allow
for the existence of two disordered phases, “vapor” and “liq-
uid;” �2� two different crystalline phases should be stable at
T=0, say “solid A” at high pressures and “solid B” at low
pressures. However, the real challenge is to find a model
where solid B and liquid are actually the same phase or, at
least, have similar thermodynamic properties along the tran-
sition line.

I have shown elsewhere �10� that an extended hard core in
the potential, when associated with an attractive tail, brings
forth two distinct fluid phases into the system. Likewise, to
observe a pressure-driven solid-solid transition at T=0, v�r�
must have a shoulder before the minimum �8,11,12�; with
this trick, the minimum-energy configuration �which is domi-
nant at low temperatures and pressures� is kept distinct from
the close-packed configuration �which is preferred at high
pressures�. Yet, these two requirements alone do not imply a
unique potential, since the extent of the hard core �i.e., the
particle diameter� as well as the height and width of the
shoulder relative to the well remain at will. The following
potentials, defining the LG34 and LG56 models, are just two
of a host of choices:

v34�r� = �
+ � , for r � r2

0, for r = r3

− � , for r = r4

0, for r � r5

�
and v56�r� = �

+ � , for r � r4

0, for r = r5

− � , for r = r6

0, for r � r7,
� �2.1�

where rn is the distance between a pair of nth-neighbor lat-
tice sites and ��0 sets the temperature scale. A pictorial
description of these models can be found in Fig. 1.

To determine whether an IM is possible or definitely ex-
cluded in a lattice gas with two distinct solid ground states,
the low-temperature profile of the solid-solid Pcox�T� is con-
structed, looking for a downward bending near T=0. How-
ever, a negative slope is not sufficient evidence of a genuine
IM unless a continuous path exists from solid B to liquid, a
question that can only be settled numerically, by e.g., the
transfer-matrix method.

I recall that, for given temperature T and chemical poten-
tial 	, the equilibrium state of a system with fixed volume V
is the one minimizing the generalized thermodynamic poten-

tial 
̃=E−TS�E ,V ,N�−	N as a function of energy E and
particle number N, S�E ,V ,N� being the system entropy func-

tion �13�. The minimum 
̃ defines the system grand potential

, whereas −
 /V is the equilibrium pressure P expressed in
terms of T and 	. At T=0, the eligible configurations of a
lattice gas are only a few, each continuously linked with a
possible system phase at T�0. T=0 transitions occur in co-
incidence with any jump in the values of E and N at the point

of minimum of 
̃.
In the LG56 model, for example, only three states are

involved at T=0, namely two triangular crystals �solid A and
solid B� and the vacuum �the T=0 vapor�—other solid
phases, with rectangular rather than triangular symmetry, are
excluded. With a slight abuse of terminology, the same three
phases are hereafter termed solid, liquid, and vapor �in other
words, I use solid B and liquid interchangeably as synonyms

FIG. 1. Pictorial description of the lattice-gas models defined in
Eq. �2.1�. When a particle is placed in the position marked as a full
dot, crosses denote forbidden sites for the centers of other particles.
Open squares denote the lattice sites that are occupied by the
nearest-neighbor particles of the central particle in the close-packed
solid A. Open dots denote attractive sites for the central particle:
Here are placed its nearest-neighbor particles in the loose-packed
solid B. In the LG34 model, these attractive sites are twelve, con-
tributing a twofold degeneracy to the spatial orientation of solid B.
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of a low-temperature loose-packed phase�. In the liquid
phase, the number density � takes values that are intermedi-
ate between those of solid and vapor. To set the notation, let
a be the triangular-lattice spacing and vc= �	3/4�a2 the
elementary-cell volume—the total number of lattice sites is
M =V /vc. The T=0 values of 
 /M for the three phases are
−	 /9, �−3�−	� /12, and 0, respectively. Whence a liquid-
vapor transition at 	=	lv
−3�, followed by a solid-liquid
transition at 	=	sl
9�. The coexistence pressures in re-
duced, � /vc units are Plv

* =0 and Psl
* =1, respectively. A simi-

lar treatment for the LG34 model yields T=0 phase transi-
tions at 	=−3� and 	=4�, with the same reduced values of
the coexistence pressures as for LG56.

In order to extend the analysis to nonzero �small� tem-
peratures, I proceed as follows. For each phase of the model,
I list the allowed configurations �i.e., with no overlapping
particles� that are obtained from the ground state by remov-
ing or adding a few particles. Afterwards, for each excited
state I calculate the multiplicity and the Boltzmann weight in
terms of M, �	, and �� ��= �kBT�−1, where kB is Boltz-
mann’s constant�. Finally, for each pair of coexisting phases,
particle configurations are ordered by increasing relevance
close to the transition threshold. The goal is to come up with
an approximate expression for the 
 of each phase that could
next be used to draw the low-temperature portion of the tran-
sition lines.

The detailed working out of these truncated expansions is
rather lengthy. In the Appendix, only a sketch of the deriva-
tion is presented, using the LG56 model as an example. Be-
sides that, also the relevant expansions for the LG34 model
are reported. For both models, the solid-liquid Pcox�T� shows
a decreasing behavior at low temperature, leaving room for
an IM in both cases �see Figs. 9–12�. While postponing to
Sec. IV the integration of these results with the full transfer-
matrix data, I here comment on the mechanism that is re-
sponsible for a larger entropy of the solid phase at coexist-
ence. As specifically illustrated in the Appendix for the LG56
model, in the liquid phase there is a strong imbalance be-
tween vacancies and interstitials as for free-energy cost: At
low temperature, vacancies are far more easily excited than
interstitials, which instead require a considerable rearrange-
ment of the local structure in order to make room for the
extra particles. On the other hand, vacancies have a lower
cost in the solid phase since any particle removal in the liq-
uid goes along with the rupture of many nearest-neighbor
bonds, hence with a substantial energy increase. The out-
come is that, at T�0, a smaller pressure than at zero tem-
perature is required for stabilizing the solid phase.

III. METHOD

To reconstruct the phase diagram of a lattice-gas model, I
use the transfer-matrix method and, to some extent, also
grandcanonical Monte Carlo �MC�. If the interaction has an
upper cutoff, the exact grandpotential of a system being in-
finite in one spatial direction and finite in the other�s� can be
computed as the logarithm of the maximum eigenvalue max
of a so-called transfer matrix �TM�. In two dimensions, the
simplest case occurs when this matrix encodes the interac-

tion between a row of sites and the next row along the infi-
nite strip direction y. In this case, the matrix size equals the
total number of states in a row. More generally, depending on
the interaction range, the natural lattice unit �NLU� can con-
sist of just one single row, or a pair of consecutive rows, or a
triplet of rows, etc. In terms of max, the pressure of the strip
reads

P =
kBT

NNLU
ln max, �3.1�

NNLU being the number of sites in the NLU. The number
density �= ��P /�	�T and its �	 derivative, related to the
isothermal compressibility by KT=�−2��� /�	�T, are evalu-
ated from the raw �P data as a three-point numerical first-
and second-order derivative, respectively ��	 is made to in-
crease by steps of 0.005�. As a rule, the number of iterations
that are necessary to bring the maximum TM eigenvalue to
convergence by the power method is larger, the larger KT.
Upon increasing the number Nx of sites in a row, phase-
transition signatures—in the form of peaks in
��� /�	�T—gradually emerge, allowing one to extract the
infinite-size behavior. The virtue of the TM method is only
limited by the range of the potential and by its core exten-
sion, which both determine the maximum x size that can be
stored in the computer.

The TM study of two-dimensional �2D� lattice gases re-
ceived a strong impulse in the mid 1960s by the work of
Runnels and co-workers �14,15�. These authors provided a
considerable simplification in the problem by showing how
to reduce the TM size substantially without affecting max. In
practice, NLU states are grouped into equivalence classes
bringing together states that map onto each other when trans-
lated along x and/or reflected with respect to the strip axis.
Whence, a matrix that is a condensed form of the TM is
defined, of size equal to the number of equivalence classes,
whose maximum eigenvalue is the same as for the original
TM. In Table I, some typical dimensions are reported for the
original TM and for its compactified form, with reference to
the LG34 and LG56 models. Among many similar models,
LG34 and LG56 provided the right compromise between

TABLE I. Some data concerning the TM of the lattice-gas mod-
els that are studied in this paper: Nx is the number of lattice sites
along the finite strip size, chosen in such a way as to comply with
the periodicity of the two solid ground states �i.e., a multiple of 14
for LG34 and of 6 for LG56�; NNLU gives the number of sites
comprised in the natural lattice unit �i.e., 3Nx for LG34 and 4Nx for
LG56�; M1 is the size of the original TM; M2 is the size of the
symmetry-reduced matrix, sharing the same leading eigenvalue
with the original matrix.

Model Nx NNLU M1 M2

LG34 14 42 397357 14715

LG56 6 24 88 16

LG56 12 48 7768 385

LG56 18 72 686905 19599
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large core extension and feasibility of the TM analysis for
quite large sizes.

I have complemented the TM study with Metropolis MC
simulations in the grandcanonical ensemble. Typically, two
million MC sweeps are generated at equilibrium for L�L
triangular lattices of increasing size, up to a maximum of L
=240, with periodic boundary conditions. A MC sweep con-
sists of one average attempt per site to change the occupation
number. As a rule, simulation runs are carried out in a se-
quence, starting at a low �	 value from the empty lattice and
then raising �	 progressively at fixed temperature. In the
region of solid-liquid coexistence, equilibrium sampling
could be obstructed by liquid undercooling, i.e., by hyster-
esis. This is why, at high densities, the TM method �where
available� is to be preferred to MC simulations.

Among the computed quantities, the reduced number den-
sity �*
�vc and the isothermal compressibility KT are espe-
cially monitored. These are expressed in terms of grandca-
nonical averages as

�* = �N�/L2 and �kBTKT =
���N�2�

�N�
, �3.2�

with �N=N− �N�, N being the current particle number.
Finally, a useful tool for identifying the order of a phase

transition is to follow, e.g., for given �, the evolution of the
MC density histogram as a function of 	. In a finite system,
a roughly Gaussian peak in this histogram is the imprint of a
homogeneous phase, a second-order transition �or just a
crossover� is signalled by a broader peak, while phase coex-
istence appears as a bimodal density distribution. Hence, it is
possible to discriminate between smooth �continuous� and
first-order condensation by just looking at the 	 evolution of
the density histogram at a fixed temperature.

IV. RESULTS

A. LG34 model

This model was studied with the TM method only, con-
sidering just one lattice strip 14 sites wide. This is the small-
est size allowing both solid ground states to be accommo-
dated into the strip. The next suited size, 28, is just too big
for being amenable to numerical analysis by the TM method.

In Fig. 2, I show results for three isotherms somehow
representative of the different regimes, the overall phase dia-
gram being represented in Fig. 3. It is clear that, beyond a
fluid phase and a solid of �reduced� density 1/4, there is
also an intermediate solid B phase, of density 1/7, which
is present only when the temperature is low. As temperature
grows, the border that marks the region of solid B stability
gets thinner till it disappears, leaving a passage into the fluid.
However, this is an effect of the finite strip size while, in the
thermodynamic limit, there will likely be no way to enter
solid B smoothly from the fluid. Hence, calling “solid” the
phase with �*1/7 �rather than “liquid”� is a proper usage.
Finally, the fluid phase shows vaporlike properties at low
pressure, with densities lower than 1/7, while appearing liq-
uidlike for high pressures, with densities higher than 1/7.

The two solids and the liquid meet in a triple point at
T*
kBT /��0.90 and P*
 Pvc /��0.98. Above this pres-

sure, and up to P*=1, the solid-solid transition under iso-
baric conditions anomalously occurs with volume contrac-
tion on heating, as already anticipated from the low-
temperature expansions.

Though the reported data are for just one strip size, their
consistency with an exact low-temperature analysis �see

FIG. 2. LG34 model, TM results for Nx=14. The reduced num-
ber density �dotted lines� and its �	 derivative �continuous lines�
are shown for three isotherms, ��=0.75, 0.80, and 0.89. To help the
eye, straight lines are drawn between data points. Peaks in the den-
sity derivative are the imprint of phase boundaries. As a rule, the
more pronounced a maximum is, the stronger the phase transition.
The confluence of three distinct phases �solid A, solid B, and liquid�
at ��0.90 is quite transparent from the behavior at ��=0.89 �see
also Fig. 3 �inset��. Upon raising the temperature, the region of solid
B gradually shrinks until its boundaries fade away. However, in the
thermodynamic limit, there will reasonably be no path to go
smoothly from fluid to solid B.

FIG. 3. LG34 model, TM results for Nx=14. Overall phase dia-
gram of the system as resulting from joining the �T , P� points that
correspond to ��* /��	 peaks. The LG34 potential �open dots and
continuous lines� is contrasted with the LG3 repulsive law of Ref.
�16� �Nx=14, open squares and dashed lines�. Spline interpolants
drawn between LG34 data points mark first-order phase boundaries;
the interruptions are finite-size effects. The fluid phase is vaporlike
at low pressure and liquidlike at high pressure. While both models
can exist in three phases �solid A, solid B, and fluid�, LG34 is
peculiar in that it shows a solid-solid transition with volume con-
traction on heating at constant pressure �inset�.
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Figs. 11 and 12� and the sharpness of the transition signa-
tures make me confident that the features observed in Fig. 3
give a faithful account of the phase behavior of the model in
the thermodynamic limit.

The LG34 model resembles the phase behavior of the
purely repulsive lattice-gas model studied in Ref. �16�,
hereby called LG3, where particles exclude first- and second-
neighbor sites on a triangular lattice while softly repelling
each other at third-neighbor distance. Both models share the
same phases, although LG34 is more effective in promoting
the stability of the solids at the expense of the fluid. More-
over, the possibility of a solid-solid transition at constant
pressure, further accompanied by a density increase on heat-
ing, is only peculiar to the LG34 model.

B. LG56 model

With respect to LG34, hard-core exclusion now comprises
also third- and fourth-neighbor sites. Nx must be a multiple
of 6 in order that both solid ground states fit into the peri-
odized strip. Figure 4 shows a selection of results, relative to
a number of isothermal paths for Nx=18. At low temperature,
there is a clear two-stage transition from vapor to solid A,
with an intermediate phase of density 1/12. This phase has
strong crystalline features, as signaled by the extremely
small values of KT, hence it will tentatively be called solid B.

Upon increasing the temperature, the character of the first
transition gradually modifies, becoming smoother and
smoother until it disappears for ��0.38, leaving a direct
transition from vapor to solid A at higher temperatures. At
the same time, the nature of the intermediate phase also
changes, since appreciable �0.1 or so� values of ��* /��	

give support to the idea that this phase is actually liquid �I
shall add more evidence on this later�. The resulting phase
diagram, see Fig. 5, resembles that of 4He, with the obvious
difference that there is no superfluid region in the LG56 liq-
uid. The most exciting feature of the LG56 phase diagram is
the clear IM behavior that is found in the narrow pressure
range from 0.97 to 1 �see Fig. 5 �inset��. The mechanism
upon which IM rests has been already clarified in Sec. II: it
deals with the lower cost of proliferating vacancies in solid A
than in the low-temperature solid B.

In the same Fig. 5, I sketch the phase diagram of another
model, called LG5. Its pair potential shares the same core
with v56�r�, but it shows a repulsive � shoulder at r=r5 and
no well. This purely repulsive model cannot have a liquid
phase, hence the �*1/12 phase should be a triangular solid
which, in the thermodynamic limit, will be separated from
the fluid phase by an uninterrupted first-order line. The IM-
like feature that is seen along the solid-solid coexistence line
of LG5 is probably an artifact of the finite strip size, since it
deflates upon going from Nx=12 to 18.

To probe the exactness of the TM technique, I have car-
ried out a series of MC simulations for a 18�360 lattice at
��=0.4. MC data points, reported as dots and asterisks in
Fig. 4, do clearly lie superimposed over the TM data. When
the temperature is sufficiently high, a more significant check
of the TM results is provided by the calculation of the system
pressure with the method of thermodynamic integration. At
high temperatures, the simulation can be pushed through the
transition region between liquid and solid, with no risk of
bumping into phase-space bottlenecks �in other words, no
hysteresis or effective ergodicity breaking is observed�.

FIG. 4. LG56 model, TM results for Nx=18. The reduced num-
ber density �dotted lines� and its �	 derivative �continuous lines�
are shown for a number of isotherms, ��=0.34, 0.38, 0.4, 0.45, 0.5,
and 0.6. To help the eye, straight lines are drawn between data
points. MC data for an 18�360 periodic sample, relative to ��
=0.4, are also shown: Reduced-number density �open dots� and its
�	 derivative �asterisks�, as computed through the number fluctua-
tions �see Eq. �3.2��. Upon increasing the temperature, the liquid-
vapor peak progressively broadens till it disappears at ��=0.38.
The solid-liquid peak is present at all temperatures: It is already
very sharp for ��=0.45, becoming even sharper for lower tempera-
tures �not shown�.

FIG. 5. LG56 model, TM phase diagram for Nx=12 �open tri-
angles and dashed lines� and 18 �open dots and continuous lines�.
The phase diagram of LG56 is contrasted with that of LG5 �Nx

=18, open squares and dashed lines�. Both models can exist in three
phases: However, while the dense phase of low pressure is solid B
for the purely repulsive LG5 model, the analogous phase for LG56
is liquid, at least for high temperatures �see my arguments in Sec.
IV B�. The LG56 model is peculiar in that an inverse melting occurs
�inset�. The asterisk is a point on the solid-liquid coexistence line of
the wider LG56 strip that was constructed by MC �see the main
text�. The shallow minimum in the solid-solid Pcox�T� of LG5 is
probably a finite-size effect since this feature is less evident for
Nx=18 than for Nx=12 �not shown�.
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Eventually, �	 becomes so high that the truncated expansion
�A10� of the LG56 solid pressure holds true. Combining this
expansion with the MC values of the number density, I was
able to obtain an estimate of the pressure at the point of
maximum of ��* /��	 �the asterisk in Fig. 5 �inset�� that
compares well with the TM datum.

The main question left open by the TM analysis concerns
the nature of the �*1/12 phase: Is it actually a liquid? A
related question is: Does the liquid-vapor boundary of the
infinite-size system really terminate near ��=0.38 or will it
rather join somewhere to the freezing line, like in the LG5
case? Should the latter be true, it would indeed be hard to
qualify the intermediate phase of the LG56 model as liquid.

I have carried out MC simulations of large L�L triangu-
lar lattices, up to L=240, along three isotherms, �=0.30,
0.34, and 0.38. Each series of runs was arrested at the edge
of freezing, i.e., before equilibrium statistics could become
inefficiently sampled by MC. The values obtained for the
number density and its �	 derivative are reported in Fig. 6,
together with the TM data for Nx=18. While leaving substan-
tially unaltered �with respect to the TM hint� the location of
freezing, the MC results clearly indicate that vapor conden-
sation persists well beyond T*=1/0.38, without merging into
the freezing transition �see the asterisks in Fig. 7�.

Further information on vapor condensation can be ac-
quired by monitoring the density histogram as a function of
�	 at constant temperature. This is drawn in Fig. 7 �inset�
for L=240 and ��=0.38 �similar results are found for ��
=0.34 and 0.30�. Note the same Gaussian character and the
comparable width of the density histograms on either side of

the condensation point. While a first-order condensation can
be safely excluded from these results, it would be hard to
discriminate a locus of critical points from a disorder line.
The numerical errors affecting particle-number fluctuations
are not small enough to decide, from the size scaling of the
compressibility maximum, whether the condensation line ter-
minates with a critical ending point or rather proceeds to
infinite temperature. In any case, a smooth vapor condensa-
tion can hardly be reconciled with the symmetry breaking
that would be implied by a phase transition into a triangular
solid. It is true that there are lattice gases where the transition
from vapor to solid is reported to be second-order or even
smoother, but this only occurs when the core diameter of the
particles is very small �17�. Moreover, the large values of
��* /��	 within the �	 range of the intermediate phase are
more appropriate to a liquid than to a solid.

There is a last point to discuss, related to the possibility
that a phase-transition line separating solid B from liquid,
running at about constant T, was overlooked by the present
TM study, which considered only isothermal scans of the
phase diagram. It is worth noting that this was not the case
for the LG34 model, where in fact the TM analysis revealed
the existence of a clear first-order boundary between the two
phases. The question remains as to whether a smoother tran-
sition occurs in the LG56 case. To clarify this point, I carried
out a TM study of the Nx=12 and 18 strips along various
constant-	 lines. The locus of points where ��* /��	 is
maximum as a function of temperature is reported as a
dashed line in Fig. 7. By looking at this picture, one is
tempted to conclude that solid B and liquid are actually dis-
tinct phases. In fact, things are more complicated since, e.g.,
for 	=8�, the broad maximum of ��* /��	 occurs with no
evidence of density jump �see Fig. 8�. My conclusion is that
either this maximum marks the crossover from a prominently

FIG. 6. LG56 model, data for three distinct isotherms, �=0.30,
0.34, and 0.38. Above: reduced number density �*; below: �	 de-
rivative of �*. TM data for Nx=18 �dotted lines� are contrasted with
spline interpolants of the MC results for L�L lattices, with L
=120, 180, and 240 �continuous lines�. The MC density derivative
is computed through the number fluctuations via Eq. �3.2� �the
larger L, the more pronounced the ��* /��	 maximum is�. While
distinctly recording the freezing transition at all temperatures, a
strip of 18 sites is not large enough to follow the boundary between
vapor and liquid beyond a reduced temperature of 1 /0.38. On the
basis of the present MC evidence, it is hard to say whether the
liquid-vapor boundary survives at all temperatures or it rather turns
into a noncritical disorder line at a finite temperature �the scaling of
the MC compressibility at the estimated transition point is
inconclusive�.

FIG. 7. LG56 model, phase diagram on the T-	 plane: TM
results for Nx=18 �open dots and continuous lines� plus three MC
data points for a 240�240 lattice �asterisks�, corresponding to the
location of the ��* /��	 maxima in Fig. 6. A further dashed line
connects TM data points for Nx=18 recording maxima of ��* /��	
along constant-	 cuts. Inset: �	 evolution �from left to right� in the
range from 2.30 to 3.25, with steps of 0.05, of the density histogram
for �=0.38 and L=240. It appears from the inset that the liquid-
vapor transition either turns continuous at high temperatures or it
becomes a crossover.
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liquidlike to a prominently solid B-type behavior within the
same phase or there is an underlying weak first-order transi-
tion between liquid and solid B, characterized by a small
jump of specific volume. In the latter case, the seemingly
negative slope of the phase boundary would be the result, via
Eq. �2.1�, of a slight number-density decrease occurring upon
going from liquid to solid B, which is consistent with the TM
data of Fig. 8.

Further information is obtained from a series of MC simu-
lations that I carried out for 	=8�, with �� ranging from 0.3
to 0.4. In Fig. 8, I report results for two sizes: L=120 and
240. It turns out that the only clear singularity occurs at ��
�0.34, which corresponds to the same liquid-vapor transi-
tion found at �	�2.70 along the ��=0.34 isotherm. How-
ever, upon increasing �� a little further, the simulated system
abruptly transformed into an almost perfect realization of
solid B, suggesting that what is probably realized in the
LG56 model is the weak-transition scenario: The low-
temperature liquid, which looks like a disordered patchwork
of solid A and solid B grains, is not capable to dismiss its
solid A fraction continuously on cooling, being thus forced to
transform into solid B abruptly. Considering that the hypo-
thetical solid-B liquid boundary appears to join to the locus
of solid A melting at about where the slope of the latter
changes from negative to positive, the IM behavior of the
LG56 model might not differ significantly from the LG34
model, though the former is undoubtedly closer to realizing
the ideal IM scenario than the latter.

Finally, let me draw some implications from the above
results. From the arguments presented in the Appendix, it is
evident that a decreasing freezing line on the T-P plane will
be the rule, at sufficiently low temperature, for all the poten-
tials having the same shape of v56�r�. Whether this is an
imprint of a genuine IM, rather than of a solid-solid transi-
tion occurring with volume contraction upon heating at con-
stant pressure, is a complicated matter to grasp, which might

be linked to the existence of a congruous number of liquid
configurations that are proximal, as for number density, to
the loose-packed crystalline ground state. This is about to
occur in the LG56 case, where the equilibrium liquid at mod-
erately low temperatures comes indeed very close, as for
specific volume and entropy contents, to a defected solid B.
Supposedly, when both particle core and potential well be-
come slightly enlarged with respect to the LG56 case, with
the width of the barrier staying fixed, the likelihood of ob-
serving a genuine IM will get enhanced.

V. CONCLUSIONS

Inverse melting �IM� is the phenomenon by which a crys-
tal melts when cooled at constant pressure. This can only
occur if, at the transition point, the solid is more entropic
than the liquid. Besides helium at low temperature, the only
system where an IM-like transition is observed are some pe-
culiar polymer solutions, denoted P4MP1.

In the present paper, I investigated the possibility of a
lattice analog of IM. To this aim, I introduced a triangular-
lattice-gas system, called LG56, where the particle diameter
is 3, in units of the lattice constant, and there is a narrow
attractive well at a bit larger distance, 2	3 lattice units. The
phase diagram of this system bears some indication of IM,
similar to that occurring in helium by a completely different
mechanism, which can be rationalized as follows: The soft
interparticle repulsion causes the existence of two distinct
crystalline ground states, a close-packed solid at high pres-
sures, and a more open crystal structure at low pressures.
When the core diameter is large enough, which is about the
case of the LG56 model, the loose-packed crystal will
smoothly transform into a liquid at high temperatures, i.e.,
without crossing a neat phase boundary. In addition to that,
the interplay between interaction and lattice geometry pro-
duces two effects, both essential to promote IM: �1� Intersti-
tials are heavily suppressed in the low-temperature liquid;
�2� vacancies are more easily excited in the solid than in the
liquid phase, thus conferring an entropic benefit to the solid.
As a result, the melting line on the T-P plane is bent down-
ward when the temperature is sufficiently low.

It can be argued that a genuine IM cannot be observed in
a softly repulsive lattice-gas system since, upon lowering the
temperature, any dense fluid phase should eventually turn
into a loose-packed solid. In fact, the real question is whether
a stable liquid can be pushed to such low temperatures that,
in a range of pressures, the close-packed solid first melts into
the liquid upon cooling, only after transforming into the
loose-packed solid. The present study shows that the LG56
model is indeed close to realize this ideal IM scenario.

I add a final remark on the transferability of the above
results to soft-core potentials on a 3D lattice. As far as the
previously cited requisites on the inner-core and attractive-
well extensions are met, I find no reason to think that the
behavior in 3D will be much different. In particular, the same
mechanism leading in 2D to a minimum in the freezing pres-
sure as a function of temperature will be at work also in 3D.
Presumably, the only marked difference concerns the order
of the phase transitions, which are stronger in a higher-

FIG. 8. LG56 model, TM and MC data for the reduced number
density �* and its �	 derivative along the 	=8� line. TM data for
Nx=12 �dashed line� and Nx=18 �dotted lines� are contrasted with
MC results for L�L lattices, with L=120 and 240 �continuous
lines�. The transition at ���0.34 is from vapor to liquid while a
defected solid B structure abruptly appeared when pushing the
simulation beyond ��=0.40. Inset: �	 evolution �from left to right�
in the range from 0.3 to 0.4, with steps of 0.005, of the density
histogram for L=240.
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dimensionality space. Consider, for instance, a 3D counter-
part of the LG56 model. While the freezing, solid A-to-liquid
transition of the LG56 model is strongly first-order already in
2D, the transition from solid B to liquid would be much
neater in 3D, with the effect of removing any residual ambi-
guity on the nature of the dashed-line crossover of Fig. 7.
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APPENDIX A: LOW-TEMPERATURE EXPANSIONS

In this Appendix, exact series expansions are used to ex-
amine the low-temperature behavior of the LG34 and LG56
models, with specific regard to the determination of first-
order phase boundaries. Besides their intrinsic interest, these
expansions may provide a consistency check of the TM re-
sults. For both lattice gases, an expansion of the grand par-
tition function �, from which the grand potential 
 follows
as −kBT ln �, is presented for all low-temperature phases:
solid, liquid, and vapor �in this Appendix, I call “liquid”
what is actually the loose-packed solid B phase�. For a pair
of competing phases, the transition line is located where the
respective grandpotentials are equal. The derivation of these
expansions is rather lengthy and it would demand too much
space to be reported here in full detail, hence it will just be
sketched. For one model �LG56�, the high-	 expansion of
the solid pressure is also displayed.

LG56 model. In the very cold vapor, there are just a few
particles on an otherwise empty lattice. The leading terms in
� are those associated with the largest Boltzmann factors,
hence with a small number of particles, better if linked by
liquidlike bonds. The expansion of �V will appear as

�V = 1 + Me�	 +
M�M − 37�

2
e2�	 + 3Me2�	e�� + 3M�M

− 61�e3�	e�� + 9Me3�	e2�� + 2Me3�	e3��

+ 12Me4�	e4�� + 3Me4�	e5�� + ¯ . �A1�

The prefactors of the exponentials are multiplicities as cal-
culated for the bulk system.

Similarly, in the very cold liquid, the microstates, which
occur with higher probability at equilibrium, are obtained
from the triangular crystal of density 1/12 by removing a
small number of particles, better if bound to each other. The
grandpartition function starts with

�L = e��	+3���M/12�12 + Me−�	e−6�� + 3Me−�	e−11��

+ 3Me−2�	e−11�� +
M

2
�M

12
− 7�e−2�	e−12��

+ 2Me−3�	e−15�� + 9Me−3�	e−16�� + 3M�M

12

− 10�e−3�	e−17�� + 3Me−4�	e−19�� + 12Me−4�	e−20��

+ 6Me−5�	e−23�� + ¯ � . �A2�

Close to 	LV=−3� and T=0, I set �	=−3��+�. More-
over, I define the small parameter x=exp�−���. Disregarding
all terms smaller than x8, one eventually finds

ln �V

M
= e�x3 + 3e2�x5 + �2e3� −

37

2
e2��x6 + �3e4� + 9e3��x7

+ �12e4� − 183e3��x8 + ¯ �A3�

and

ln �L

M
=

�

12
+

1

12
e−�x3 +

1

4
e−2�x5 + �−

7

24
e−2� +

1

6
e−3��x6

+ �3

4
e−3� +

1

4
e−4��x7 + �1

4
e−� −

5

2
e−3� + e−4�

+
1

2
e−5��x8 + ¯ . �A4�

In these formulas, we see the linked-cluster theorem at work:
Despite the fact that multiplicities of disconnected clusters of
defects are not linear in M �see Eqs. �A1� and �A2��, the
logarithm of the partition function turns out to be extensive
due to the cancellation of terms proportional to M2 ,M3, etc.

For given � and �	, the stable phase has the largest � or,
equivalently, ln �. Stated differently, the vapor is more
stable than the liquid as far as 
V�
L, or

�e� � �12e2� − 1�x3 + �36e3� − 3e−��x5 + �24e4� − 222e3�

+
7

2
e−� − 2e−2��x6 + �36e5� + 108e4� − 9e−2� − 3e−3��x7

+ �144e5� − 2196e4� − 3 + 30e−2� − 12e−3� − 6e−4��x8

+ ¯ . �A5�

In particular, for small x and �=0 the stable phase is vapor,
meaning that the low-T part of the liquid-vapor coexistence
line is bent upward in the 	-T plane �see a comparison with
the TM data in Fig. 9 below�.

As far as the solid is concerned, the low-cost excitations
are defected crystals with a small number of vacancies. The
expansion of the grandpartition function starts with

�S = e�	M/9�9 + Me−�	 +
M

2
�M

9
− 1�e−2�	 + 2Me−2�	e3��

+ 3Me−3�	e7�� + ¯ � . �A6�

For the liquid, I can still use Eq. �A2� since interstitials are
irrelevant at low temperature: Their accomodation requires
such a huge reorganization of the local liquid structure, along
with the breaking of so many bonds, that the loss in Boltz-
mann weight due to a higher energy greatly overcomes the
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gain due to an increased particle number. Close to 	LS=9�
and T=0, I set �	=9��+� and x=exp�−���, thus arriving at
the following ln � expansions for the liquid and the solid:

ln �L

M
= �� +

�

12
+

1

12
e−�x15 +

1

4
e−�x20 + ¯ �A7�

and

ln �S

M
= �� +

�

9
+

1

9
e−�x9 +

2

9
e−2�x15 −

1

18
e−2�x18 +

1

3
e−3�x20

+ ¯ . �A8�

The solid is more stable than the liquid when 
S�
L, or

�e� � − 4x9 + �3 − 8e−��x15 + 2e−�x18 + �9 − 12e−2��x20 + ¯ .

�A9�

For small x, the above inequality is satisfied for �=0, indi-
cating that the solid-liquid coexistence line is bent downward
when the temperature is low �see Fig. 9 above�. This holds
true also on the T-P plane, as one obtains from the values of
the liquid or solid P*=T* ln � /M along the coexistence line
	cox�T� �see Fig. 10 above�.

Finally, the first few terms in the high-	 expansion of the
solid pressure for the LG56 model are

FIG. 10. LG56 model, phase boundaries on the T-P plane. Data
and notation as in Fig. 9.

FIG. 11. LG34 model, phase boundaries on the T-	 plane as
obtained from the TM data �Nx=14: open dots and continuous lines�
and from exact low-temperature expansions �full squares�. Above:
Solid-liquid coexistence �from left to right, squares refer to �=0,
−0.01,−0.02,−0.05,−0.1,−0.2�; below: Coexistence between liq-
uid and vapor �from left to right, squares refer to �
=0,0.01,0.02,0.05,0.1,0.2,0.5�. As � grows, the truncated expan-
sions become less and less reliable until consistency with TM data
is lost.

FIG. 12. LG34 model, phase boundaries on the T-P plane. Data
and notation as in Fig. 11.

FIG. 9. LG56 model, phase boundaries on the T-	 plane as
obtained from the TM data �Nx=12: dashed lines; Nx=18: open dots
and continuous lines� and from exact low-temperature expansions
�full squares�. Above: Solid-liquid coexistence �from left to right,
squares refer to �=0,−0.01,−0.02,−0.05,−0.1,−0.2�; below:
Liquid-vapor coexistence �from left to right, squares refer to �
=0,0.01,0.02,0.05,0.1,0.15�. As � grows, the truncated expan-
sions become less and less reliable until consistency with TM data
is lost.
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�Pvc =
�	

9
+

1

9
e−�	 +

4e3�� − 1

18
e−2�	 + �1

3
e7�� −

2

3
e3��

+
19

27
�e−3�	 + ¯ . �A10�

From here, the high-	 expansion of the number density fol-
lows by differentiation.

LG34 model. Without entering much into details, which
are similar to those for LG56, I list the expansions that are
relevant for the low-temperature analysis of the LG34 model.

The grandpartition function of the vapor reads

�V = 1 + Me�	 +
M�M − 25�

2
e2�	 + 6Me2�	e�� + 6M�M

− 40�e3�	e�� + 42Me3�	e2�� + 4Me3�	e3��

+ 60Me4�	e4�� + 6Me4�	e5�� + ¯ . �A11�

The grandpartition function of the liquid �not to be con-
fused with the dense fluid phase of the model� reads

�L = e��	+3���M/7�14 + 2Me−�	e−6�� + 12Me−�	e−10��

+ 6Me−2�	e−11�� + M�M

7
− 7�e−2�	e−12��

+ 12Me−2�	e−14�� + 4Me−3�	e−15�� + 18Me−3�	e−16��

+ 6M�M

7
− 10�e−3�	e−17�� + 6Me−4�	e−19��

+ 24Me−4�	e−20�� + 12Me−5�	e−23�� + ¯ � . �A12�

With the same x as before, the insertion of �	=−3��
+� into Eqs. �A11� and �A12� shows that the vapor is more
stable than the liquid when

�e� � �7e2� − 1�x3 + �42e3� − 3e−��x5 + �28e4� −
175

2
e3�

+
7

2
e−� − 2e−2��x6 + �42e5� + 294e4� − 6 − 9e−2�

− 3e−3��x7 + �420e5� − 1680e4� − 6e−� + 30e−2�

− 12e−3� − 6e−4��x8 + ¯ . �A13�

The ensuing liquid-vapor coexistence line on the T-	 plane
is reported in Fig. 11 below.

The solid grandpartition function reads

�S = e�	M/4�4 + Me−�	 +
M

2
�M

4
− 1�e−2�	 + 3Me−3�	e4��

+ ¯ � . �A14�

Upon substituting �	=4��+� into Eqs. �A12� and �A14�,
it finally turns out that the solid is more stable than the liquid
when

�e� � −
7

3
x4 + �7

6
e−� − 7e−2��x8 +

4

3
x10 + ¯ �A15�

The solid-liquid coexistence line is reported in Fig. 11 above.
Phase boundaries on the T-P plane have a similar appear-
ance, see Fig. 12.
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